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ABSTRACT

We present an algorithm for solving Toeplitz least squares problems. By embedding the Toeplitz matrix into a
circulant block matrix and by applying the Discrete Fourier Transform, we are able to transform the linear least
squares problem into a discrete least squares approximation problem for polynomial vectors. We have implemented
our algorithm in Matlab. Numerical experiments indicate that our approach is numerically stable even for ill-
conditioned problems.
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1. TOEPLITZ LINEAR LEAST SQUARES PROBLEMS

Letm>n>1,t_p41,...,tm—1 € C and

k=0,...,n—1
T := [tjfk]j:07___7:;_1

a m X n Toeplitz matrix that has full column-rank. Let b € C™. We consider the corresponding Toeplitz linear least
squares problem (LS-problem): given T and b, determine the (unique) vector z € C™ such that

||Tz — b|| is minimal, (1)

where || - || denotes the Euclidean norm.

Standard algorithms for solving dense linear least squares problems require O(mn?) floating point operations
(flops). In the case of (1), the amount of work can be reduced by taking into account the special Toeplitz structure
of T. Algorithms that require only O(mn) flops are called fast. Several such algorithms have been developed. Sweet!
was one of the first to introduce a fast algorithm. His method is not numerically stable, though. Other approaches
include those by Bojanczyk, Brent and de Hoog,? Chun, Kailath and Lev-Ari,® Qiao,* Cybenko,>% Sweet” and many
others.

Recently, Ming Gu® has developed fast algorithms for solving Toeplitz and also Toeplitz-plus-Hankel linear least
squares problems. He first transforms the matrix into a Cauchy-like matrix by using the Fast Fourier Transform
or trigonometric transformations and then he solves the corresponding Cauchy-like linear least squares problem.
Numerical experiments show that this approach is not only efficient but also numerically stable, even if the coefficient
matrix is very ill-conditioned.

In this paper we will also present a numerically stable method that works for ill-conditioned problems—in other
words, for problems that cannot be solved via the normal equations approach. We start by embedding the original
LS-problem into an extended LS-problem, whose coefficient matrix is a circulant block matrix. By applying the
Discrete Fourier Transform, we obtain a discrete least squares approximation problem for polynomial vectors, which
can be solved accurately.
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2. TRANSFORMING A TOEPLITZ LINEAR LEAST SQUARES PROBLEM INTO A
DISCRETE LEAST SQUARES APPROXIMATION PROBLEM

Let M be an integer that is larger than or equal to m + n — 1. For the moment, one can choose M arbitrarily but,
as will soon become clear, an appropriate choice for M is the smallest power of 2 that is > m +n — 1, which assures
that the Discrete Fourier Transform of size M can be computed efficiently. Let A and B be complex matrices of
sizes (M —m) x n and (M — m) x (M — m), respectively. The matrix B is assumed to be nonsingular. Finally,
let @ € CM~™. Instead of looking for the vector x € C" that satisfies (1), let us consider the following linear
LS-problem, which we will call the extended LS-problem: determine the (unique) vectors & € C" and y € CM—™
such that the Euclidean norm of the vector

S A B T| |a
| T 0 y b
is minimal. Then # = z. In other words, the first ‘component’ # of the solution to the extended LS-problem

coincides with the solution to the original LS-problem. This can be proved very easily. By considering the square of
the Euclidean norm, we obtain that the vectors # and y minimize

|AZ + By — al|® + ||T% — b||>. (2)

The problem of minimizing ||r|| has only one solution { v } . If £ = x, then the second term in the sum (2) is minimal.

Since the square matrix B is nonsingular, we can reduce the first term in (2) to zero by setting y := B~!(a — A%)
for any given Z. It follows that indeed & = .
How to choose the matrices A and B? We propose to choose them such that the two block columns

o=[2] o e=[7]

are circulant matrices. For example, if we set M := m + n — 1, then we can choose B as the identity matrix of
order n — 1 and A as the (n — 1) x n Toeplitz matrix
k=0,...,n—1
A= [t—n+1+j—k]j:0,...,:;—2
with t_,_p = tj_p—1 for k =0,1,...,n — 1. We take a to be the zero vector. As we have already mentioned at
the beginning of this section, a more appropriate choice for M is one that allows the Discrete Fourier Transform (of
size M) of the columns of the circulant matrices Cy and Cy to be computed efficiently.

Define C5 as the vector

032:—|:Z:|€CM.

This vector can be interpreted as the first column of a circulant matrix. The extended LS-problem can now be
formulated as follows: determine the vectors x and y such that the norm of the vector

r=[C G C’3]|-§-|ECM

1]

is minimal. Note that the circulant block matrix [ Ci Cy Cs ] is of size M x (n+ M —m + 1). The matrices C,
Cs and Cj5 are circulant matrices. It is well-known that a p X p circulant matrix C can be factorized as

C =FJAT,

where A is a p x p diagonal matrix containing the eigenvalues of C' and F,, denotes the p x p Discrete Fourier Transform
matrix (DFT-matrix)

Fp = [wik]j7k:o7...,p—1



where wy, := e 2m/P and i = /—1. Similarly, if C' is of size p x ¢, where p > ¢, then C' can be factorized as
H
C=F,AF,

where A is again a p x p diagonal matrix and where 7, , denotes the p x ¢ submatrix of F, that contains the first
g columns of Fp.

By applying the Discrete Fourier Transform to r, the norm of r remains unchanged: ||r|| = ||Farr]. We will
therefore minimize || Fpsr|| instead of ||r||. The following holds:

Fur = Fu[ Ci Cy C3]{§} (3)
= [ MFun MoFus AsFu | { ; } (4)
1

where s := M —m and where A; =: diag (\; 1), is a M x M diagonal matrix for j = 1,2, 3.

We will now translate the extended LS-problem into polynomial language. Define the polynomials z(z) and y(2)
as

n—1 s—1
z(2) = Zazkzk and y(z) :== Zykzk.
k=0 k=0

Here xj, and y; denote the components of the vectors z and y. The DFT-matrix Fas can be interpreted as a
Vandermonde matrix based on the nodes z; := wk;, k =0,1,..., M — 1. Equation (4) now implies that the extended
LS-problem can be formulated as the following discrete polynomial least squares approximation problem at roots of
unity: determine the polynomials z(z) and y(z), where deg z(z) < n — 1 and degy(z) < s — 1, such that

M—-1

> z(zr) + ey (ze) + Asel] (5)
k=0

is minimal.

3. ORTHOGONAL POLYNOMIAL VECTORS

The minimisation problem (5) can be solved within the framework of orthogonal polynomial vectors developed by
Van Barel and Bultheel.”*2 The following notation will be used: to indicate that the degree of the first component
of a polynomial vector P € C[z]>*! is less than or equal to «, that the degree of the second component of P is less
than 0 (hence, this second component is equal to the zero polynomial), and that the degree of the third component
is equal to 3, we write
e
degP =| —1
B

We consider the following inner product and norm.

DEFINITION 3.1 (INNER PRODUCT, NORM). Consider the subspace P C C[z]3*} of polynomial vectors P of degree

wsr=| |
Lo

Given the points z € C and the weight vectors

Fi, = [ >‘17k >\27k >\3,k ] EClXB, k=1,2,...,M,



we define the discrete inner product (P, Q) for two polynomial vectors P,Q € P as follows:

M
(P,Q) ==Y P () F FQ(z). (6)

k=1

The norm ||P]| of a polynomial vector P € P is defined as:

1Pl == V(P, P).

A necessary and sufficient condition for (6) to be an inner product in P, is that P is a subspace of polynomial vectors
such that a nonzero polynomial vector P € P for which (P, P) = 0 (or equivalently: FpP(z;) =0,k =1,2,..., M)
does not exist. Our original LS-problem can be now stated as the following discrete least squares approximation
problem: determine the polynomial vector P* € P’ such that ||P*|| = minpep: ||P|| where P’ denotes all vectors
belonging to P and having their third component equal to the constant polynomial 1.

In [12], Van Barel and Bultheel formulated a fast algorithm for computing an orthonormal basis for P. The

degree sequence of the basis vectors Bj, j =1,2,...,4, is as follows:
0 1 -~ n—s n—-s n—s+1 n—s+1 --- n n o n
-1 -1 --- -1 0 0 1 v s5—1 s s
-1 -1 -+ -1 -1 -1 -1 - =1 =10
Every polynomial vector P € P’ can be written (in a unique way) as:
5
P = Z aij
i=1
where aq, ...,as € C. The coordinate as is determined by the fact that the third component polynomial of P has to
be monic and of degree 0. The following holds:
P> = (P,P)
] ]
= <Z%’By’, aij>
j=1 j=1
5
= Y la;* (since (B;, B;) = 6;).
i=1
It follows that ||P|| is minimized by setting a1,...,as—1 equal to zero. In other words,

P*=asBs and [|P*]| = |as].

The discrete least squares approximation problem can therefore be solved by computing the orthonormal polynomial
vector Bs. We obtain P* by scaling Bs to make its third component monic.

4. NUMERICAL EXPERIMENTS

We have implemented our approach in Matlab (MATLAB Version 5.3.0.10183 (R11) on LNX86). The numerical
experiments that we will present in this section are similar to those done by Ming Gu in [8]. The computations have
been done in double precision arithmetic with unit roundoff u &~ 1.11 x 1076, We have considered two approaches:

e QR: the QR method as implemented in Matlab. This is a classical approach for solving general dense linear
least squares problems;

e NEW: the approach that we have described in the previous sections.



Table 1. Normwise backward error (small residuals)

Matrix Order k(T) nr(x)/u
type m n QR NEW

160 | 150 | 5.4 x 10% || 1.9 x 10 | 1.5 x 10*
1 320 | 300 | 6.4 x 107 | 1.1 x10% | 1.2 x 10°
480 | 450 | 4.7 x 10* || 7.7x 10 | 2.5 x 10°
640 | 600 | 7.5 x 10%> | 9.5 x 10? | 5.6 x 10°
160 | 150 | 2.1 x 10'® || 3.9 x 10! | 2.0 x 102
2 320 | 300 | 1.5 x 106 || 2.8 x 10° | 6.2 x 10?
480 | 450 | 1.3 x 10%¢ || 2.4 x 10° | 3.3 x 102
640 | 600 | 1.3 x 10'6 || 2.0 x 10° | 2.7 x 10?

We have compared the two approaches QR and NEW for two types of Toeplitz matrices:

e Type 1: the entries ¢}, are taken uniformly random in the interval (0, 1);

e Type 2: ty := 2w and t; := W for k # 0 where w := 0.25. This matrix is called the Prolate matrix and
is very ill-conditioned.'3:!4

The right-hand side vector b has been chosen in two ways:

e Its entries are generated uniformly random in (0,1). This generally leads to large residuals.

e The entries of b are computed such that b = Tz where the entries of x are taken uniformly random in (0, 1).
In this case, we obtain small residuals.

To measure the normwise backward error, we have used the following result of Waldén, Karlson and Sun.'® See
also [16].

THEOREM 4.1. Let A€ R™*" be R™, 0#z € R", andr :=b— Ax. Let 8 € R. The normwise backward error

nr(z) = min{ || [AA, A ||p : [|[(A+ AA)z — (b+ Ab)||> = min }

s given by
nr(z) = min{ ny, omin ([A mC)) }
uhere I v 02|z |2
T2 rr X 2
— C o=I-"" gpd p=120
= g,V Ty hE T 6l

We have computed ng(z) with 6 := 1.

The numerical results are shown in Tables 1 and 2 for the two possible choices of the right-hand side vector b.

5. CONCLUSIONS

The numerical experiments show that the current implementation is still not accurate enough to be comparable with
QR or with the algorithms developed by Ming Gu. However, the results show that the normwise backward error does
not depend on the condition number of the Toeplitz matrix. We are currently working on improving the accuracy
as well as the speed of the implementation to obtain a viable alternative for the algorithms of Ming Gu where the
Toeplitz matrix can range from well-conditioned to very ill-conditioned.
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Table 2. Normwise backward error (large residuals)

Matrix Order k(T) nr(x)/u
type m n QR NEW

160 | 150 | 5.4 x 102 || 4.1 x 10! | 3.4 x 103
1 320 | 300 | 4.5x10% || 6.1 x 10" | 3.9 x 10*
480 | 450 | 4.4 x10% || 1.2 x 102 | 8.0 x 10*
640 | 600 | 9.1 x 102 | 1.0 x 102 | 1.5 x 10°
160 | 150 | 2.1 x 1018 | 1.3 x 10% | 3.9 x 10°
2 320 | 300 | 1.5 x 106 | 3.2 x 109 | 7.4 x 10°
480 | 450 | 1.3 x 106 || 2.4 x 10° | 7.2 x 10°
640 | 600 | 1.3 x 106 || 4.6 x 10° | 1.7 x 10*

REFERENCES

D. R. Sweet, Numerical Methods for Toeplitz matrices. PhD thesis, University of Adelaide, Adelaide, Australia,
1982.

A. W. Bojanczyk, R. P. Brent, and F. R. de Hoog, “@QR factorization of Toeplitz matrices,” Numer. Math. 49,
pp- 81-94, July 1986.

J. Chun, T. Kailath, and H. Lev-Ari, “Fast parallel algorithms for QR and triangular factorization,” STAM J.
Sci. Stat. Comput. 8, pp. 899-913, Nov. 1987.

S. Qiao, “Hybrid algorithm for fast Toeplitz orthogonalization,” Numer. Math. 53, pp. 351-366, 1988.

G. Cybenko, “A general orthogonalization technique with applications to time series analysis and signal pro-
cessing,” Math. Comp. 40, pp. 323-336, 1983.

G. Cybenko, “Fast Toeplitz orthogonalization using inner products,” STAM J. Sci. Stat. Comput. 8, pp. 734-740,
1987.

D. R. Sweet, “Fast Toeplitz orthogonalization,” Numer. Math. 43, pp. 1-21, Jan. 1984.

M. Gu, “Stable and efficient algorithms for structured systems of linear equations,” SIAM J. Matriz. Anal.
Appl. 19(2), pp. 279-306, 1998.

A. Bultheel and M. Van Barel, “Vector orthogonal polynomials and least squares approximation,” SIAM J.
Matriz Anal. Appl. 16(3), pp. 863-885, 1995.

M. Van Barel and A. Bultheel, “A parallel algorithm for discrete least squares rational approximation,” Numer.
Math. 63, pp. 99-121, 1992.

M. Van Barel and A. Bultheel, “Discrete linearized least squares approximation on the unit circle,” .J. Comput.
Appl. Math. 50, pp. 545-563, 1994.

M. V. Barel and A. Bultheel, “Orthonormal polynomial vectors and least squares approximation for a discrete
inner product,” Electronic Transactions on Numerical Analysis 3, pp. 1-23, Mar. 1995.

I. Gohberg, T. Kailath, and V. Olshevsky, “Fast Gaussian elimination with partial pivoting for matrices with
displacement structure,” Math. Comput. 64(212), pp. 1557-1576, 1995.

J. M. Varah, “The Prolate matrix,” Linear Algebr. Appl. 187, pp. 269-278, July 1993.

B. Waldén, R. Karlson, and J. guang Sun, “Optimal backward perturbation bounds for the linear least squares
problem,” Numerical Linear Algebra with Applications 2(3), pp. 271-286, 1995.

N. Higham, Accuracy and Stability of Numerical Algorithms, STAM, 1996.



