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rete Fourier Transform, we are able to transform the linear leastsquares problem into a dis
rete least squares approximation problem for polynomial ve
tors. We have implementedour algorithm in Matlab. Numeri
al experiments indi
ate that our approa
h is numeri
ally stable even for ill-
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tors1. TOEPLITZ LINEAR LEAST SQUARES PROBLEMSLet m � n � 1, t�n+1; : : : ; tm�1 2 C and T := [ t j�k ℄k=0;:::;n�1j=0;:::;m�1a m�n Toeplitz matrix that has full 
olumn-rank. Let b 2 Cm. We 
onsider the 
orresponding Toeplitz linear leastsquares problem (LS-problem): given T and b, determine the (unique) ve
tor x 2 Cn su
h thatkTx� bk is minimal, (1)where k � k denotes the Eu
lidean norm.Standard algorithms for solving dense linear least squares problems require O(mn2) 
oating point operations(
ops). In the 
ase of (1), the amount of work 
an be redu
ed by taking into a

ount the spe
ial Toeplitz stru
tureof T . Algorithms that require only O(mn) 
ops are 
alled fast. Several su
h algorithms have been developed. Sweet1was one of the �rst to introdu
e a fast algorithm. His method is not numeri
ally stable, though. Other approa
hesin
lude those by Bojan
zyk, Brent and de Hoog,2 Chun, Kailath and Lev-Ari,3 Qiao,4 Cybenko,5,6 Sweet7 and manyothers.Re
ently, Ming Gu8 has developed fast algorithms for solving Toeplitz and also Toeplitz-plus-Hankel linear leastsquares problems. He �rst transforms the matrix into a Cau
hy-like matrix by using the Fast Fourier Transformor trigonometri
 transformations and then he solves the 
orresponding Cau
hy-like linear least squares problem.Numeri
al experiments show that this approa
h is not only eÆ
ient but also numeri
ally stable, even if the 
oeÆ
ientmatrix is very ill-
onditioned.In this paper we will also present a numeri
ally stable method that works for ill-
onditioned problems|in otherwords, for problems that 
annot be solved via the normal equations approa
h. We start by embedding the originalLS-problem into an extended LS-problem, whose 
oeÆ
ient matrix is a 
ir
ulant blo
k matrix. By applying theDis
rete Fourier Transform, we obtain a dis
rete least squares approximation problem for polynomial ve
tors, whi
h
an be solved a

urately.Other author information: (Send 
orresponden
e to M.V.B.)M.V.B.: Email: Mar
.VanBarel�
s.kuleuven.a
.be; Telephone: +32-16-327700; Fax: +32-16-327996G.H.: Email: georg�m
s.s
i.kuniv.edu.kwP.K.: Email: Peter.Kravanja�na-net.ornl.govThe work of the �rst and the third author is supported by the Belgian Programme on Interuniversity Poles of Attra
tion, initiated bythe Belgian State, Prime Minister's OÆ
e for S
ien
e, Te
hnology and Culture. The s
ienti�
 responsibility rests with the authors.



2. TRANSFORMING A TOEPLITZ LINEAR LEAST SQUARES PROBLEM INTO ADISCRETE LEAST SQUARES APPROXIMATION PROBLEMLet M be an integer that is larger than or equal to m+ n� 1. For the moment, one 
an 
hoose M arbitrarily but,as will soon be
ome 
lear, an appropriate 
hoi
e for M is the smallest power of 2 that is � m+ n� 1, whi
h assuresthat the Dis
rete Fourier Transform of size M 
an be 
omputed eÆ
iently. Let A and B be 
omplex matri
es ofsizes (M � m) � n and (M � m) � (M � m), respe
tively. The matrix B is assumed to be nonsingular. Finally,let a 2 CM�m. Instead of looking for the ve
tor x 2 Cn that satis�es (1), let us 
onsider the following linearLS-problem, whi
h we will 
all the extended LS-problem: determine the (unique) ve
tors ~x 2 Cn and y 2 CM�msu
h that the Eu
lidean norm of the ve
torr := � A BT 0 �� ~xy �� � ab �is minimal. Then ~x = x. In other words, the �rst `
omponent' ~x of the solution to the extended LS-problem
oin
ides with the solution to the original LS-problem. This 
an be proved very easily. By 
onsidering the square ofthe Eu
lidean norm, we obtain that the ve
tors ~x and y minimizekA~x+By � ak2 + kT ~x� bk2: (2)The problem of minimizing krk has only one solution � ~xy �. If ~x = x, then the se
ond term in the sum (2) is minimal.Sin
e the square matrix B is nonsingular, we 
an redu
e the �rst term in (2) to zero by setting y := B�1(a � A~x)for any given ~x. It follows that indeed ~x = x.How to 
hoose the matri
es A and B? We propose to 
hoose them su
h that the two blo
k 
olumnsC1 := � AT � and C2 := � B0 �are 
ir
ulant matri
es. For example, if we set M := m + n � 1, then we 
an 
hoose B as the identity matrix oforder n� 1 and A as the (n� 1)� n Toeplitz matrixA := [ t�n+1+j�k ℄k=0;:::;n�1j=0;:::;n�2with t�n�k = tm�k�1 for k = 0; 1; : : : ; n � 1. We take a to be the zero ve
tor. As we have already mentioned atthe beginning of this se
tion, a more appropriate 
hoi
e for M is one that allows the Dis
rete Fourier Transform (ofsize M) of the 
olumns of the 
ir
ulant matri
es C1 and C2 to be 
omputed eÆ
iently.De�ne C3 as the ve
tor C3 := � � ab � 2 CM :This ve
tor 
an be interpreted as the �rst 
olumn of a 
ir
ulant matrix. The extended LS-problem 
an now beformulated as follows: determine the ve
tors x and y su
h that the norm of the ve
torr = � C1 C2 C3 � 24 xy1 35 2 CMis minimal. Note that the 
ir
ulant blo
k matrix � C1 C2 C3 � is of size M � (n+M �m+1). The matri
es C1,C2 and C3 are 
ir
ulant matri
es. It is well-known that a p� p 
ir
ulant matrix C 
an be fa
torized asC = FHp �Fpwhere � is a p�p diagonal matrix 
ontaining the eigenvalues of C and Fp denotes the p�p Dis
rete Fourier Transformmatrix (DFT-matrix) Fp := �! jkp �j;k=0;:::;p�1



where !p := e�2�i=p and i = p�1. Similarly, if C is of size p� q, where p � q, then C 
an be fa
torized asC = FHp �Fp;qwhere � is again a p � p diagonal matrix and where Fp;q denotes the p � q submatrix of Fp that 
ontains the �rstq 
olumns of Fp.By applying the Dis
rete Fourier Transform to r, the norm of r remains un
hanged: krk = kFMrk. We willtherefore minimize kFMrk instead of krk. The following holds:FMr = FM � C1 C2 C3 �24 xy1 35 (3)= � �1FM;n �2FM;s �3FM;1 � 24 xy1 35 (4)where s :=M �m and where �j =: diag (�j;k)Mk=1 is a M �M diagonal matrix for j = 1; 2; 3.We will now translate the extended LS-problem into polynomial language. De�ne the polynomials x(z) and y(z)as x(z) := n�1Xk=0 xkzk and y(z) := s�1Xk=0 ykzk:Here xk and yk denote the 
omponents of the ve
tors x and y. The DFT-matrix FM 
an be interpreted as aVandermonde matrix based on the nodes zk := !kM , k = 0; 1; : : : ;M �1. Equation (4) now implies that the extendedLS-problem 
an be formulated as the following dis
rete polynomial least squares approximation problem at roots ofunity: determine the polynomials x(z) and y(z), where deg x(z) � n� 1 and deg y(z) � s� 1, su
h thatM�1Xk=0 j�1;kx(zk) + �2;ky(zk) + �3;k1j2 (5)is minimal. 3. ORTHOGONAL POLYNOMIAL VECTORSThe minimisation problem (5) 
an be solved within the framework of orthogonal polynomial ve
tors developed byVan Barel and Bultheel.9{12 The following notation will be used: to indi
ate that the degree of the �rst 
omponentof a polynomial ve
tor P 2 C[z℄3�1 is less than or equal to �, that the degree of the se
ond 
omponent of P is lessthan 0 (hen
e, this se
ond 
omponent is equal to the zero polynomial), and that the degree of the third 
omponentis equal to �, we write degP = 24 ��1� 35 :We 
onsider the following inner produ
t and norm.Definition 3.1 (inner produ
t, norm). Consider the subspa
e P � C[z℄3�1 of polynomial ve
tors P of degreedegP = 24 ns0 35 :Given the points zk 2 C and the weight ve
torsFk = � �1;k �2;k �3;k � 2 C1�3; k = 1; 2; : : : ;M;



we de�ne the dis
rete inner produ
t hP;Qi for two polynomial ve
tors P;Q 2 P as follows:hP;Qi := MXk=1PH(zk)FHk FkQ(zk): (6)The norm kPk of a polynomial ve
tor P 2 P is de�ned as:kPk :=phP; P i:A ne
essary and suÆ
ient 
ondition for (6) to be an inner produ
t in P , is that P is a subspa
e of polynomial ve
torssu
h that a nonzero polynomial ve
tor P 2 P for whi
h hP; P i = 0 (or equivalently: FkP (zk) = 0, k = 1; 2; : : : ;M)does not exist. Our original LS-problem 
an be now stated as the following dis
rete least squares approximationproblem: determine the polynomial ve
tor P ? 2 P 0 su
h that kP ?k = minP2P0 kPk where P 0 denotes all ve
torsbelonging to P and having their third 
omponent equal to the 
onstant polynomial 1.In [12℄, Van Barel and Bultheel formulated a fast algorithm for 
omputing an orthonormal basis for P . Thedegree sequen
e of the basis ve
tors Bj , j = 1; 2; : : : ; Æ, is as follows:24 0 1 � � � n� s n� s n� s+ 1 n� s+ 1 � � � n n n�1 �1 � � � �1 0 0 1 � � � s� 1 s s�1 �1 � � � �1 �1 �1 �1 � � � �1 �1 0 35 :Every polynomial ve
tor P 2 P 0 
an be written (in a unique way) as:P = ÆXj=1 ajBjwhere a1; : : : ; aÆ 2 C. The 
oordinate aÆ is determined by the fa
t that the third 
omponent polynomial of P has tobe moni
 and of degree 0. The following holds:kPk2 = hP; P i= D ÆXj=1 ajBj ; ÆXj=1 ajBjE= ÆXj=1 jaj j2 (sin
e hBi; Bji = Æij):It follows that kPk is minimized by setting a1; : : : ; aÆ�1 equal to zero. In other words,P ? = aÆBÆ and kP ?k = jaÆ j:The dis
rete least squares approximation problem 
an therefore be solved by 
omputing the orthonormal polynomialve
tor BÆ . We obtain P ? by s
aling BÆ to make its third 
omponent moni
.4. NUMERICAL EXPERIMENTSWe have implemented our approa
h in Matlab (MATLAB Version 5.3.0.10183 (R11) on LNX86). The numeri
alexperiments that we will present in this se
tion are similar to those done by Ming Gu in [8℄. The 
omputations havebeen done in double pre
ision arithmeti
 with unit roundo� u � 1:11� 10�16. We have 
onsidered two approa
hes:� QR: the QR method as implemented in Matlab. This is a 
lassi
al approa
h for solving general dense linearleast squares problems;� NEW: the approa
h that we have des
ribed in the previous se
tions.



Table 1. Normwise ba
kward error (small residuals)Matrix Order �(T ) �F (x)=utype m n QR NEW160 150 5:4� 102 1:9� 102 1:5� 1041 320 300 6:4� 102 1:1� 103 1:2� 105480 450 4:7� 102 7:7� 102 2:5� 105640 600 7:5� 102 9:5� 102 5:6� 105160 150 2:1� 1016 3:9� 101 2:0� 1022 320 300 1:5� 1016 2:8� 100 6:2� 102480 450 1:3� 1016 2:4� 100 3:3� 102640 600 1:3� 1016 2:0� 100 2:7� 103We have 
ompared the two approa
hes QR and NEW for two types of Toeplitz matri
es:� Type 1: the entries tk are taken uniformly random in the interval (0; 1);� Type 2: t0 := 2! and tk := sin(2�!k)�k for k 6= 0 where ! := 0:25. This matrix is 
alled the Prolate matrix andis very ill-
onditioned.13,14The right-hand side ve
tor b has been 
hosen in two ways:� Its entries are generated uniformly random in (0; 1). This generally leads to large residuals.� The entries of b are 
omputed su
h that b = Tx where the entries of x are taken uniformly random in (0; 1).In this 
ase, we obtain small residuals.To measure the normwise ba
kward error, we have used the following result of Wald�en, Karlson and Sun.15 Seealso [16℄.Theorem 4.1. Let A 2 Rm�n, b 2 Rm, 0 6= x 2 Rn, and r := b�Ax. Let � 2 R. The normwise ba
kward error�F (x) = min� k [�A; ��b℄ kF : k(A+�A)x � (b+�b)k2 = min 	is given by �F (x) = min� �1; �min ([A �1C℄) 	where �1 := krk2kxk2p�; C := I � rrTrT r and � = �2kxk221 + �2kxk22 :We have 
omputed �F (x) with � := 1.The numeri
al results are shown in Tables 1 and 2 for the two possible 
hoi
es of the right-hand side ve
tor b.5. CONCLUSIONSThe numeri
al experiments show that the 
urrent implementation is still not a

urate enough to be 
omparable withQR or with the algorithms developed by Ming Gu. However, the results show that the normwise ba
kward error doesnot depend on the 
ondition number of the Toeplitz matrix. We are 
urrently working on improving the a

ura
yas well as the speed of the implementation to obtain a viable alternative for the algorithms of Ming Gu where theToeplitz matrix 
an range from well-
onditioned to very ill-
onditioned.
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kward error (large residuals)Matrix Order �(T ) �F (x)=utype m n QR NEW160 150 5:4� 102 4:1� 101 3:4� 1031 320 300 4:5� 102 6:1� 101 3:9� 104480 450 4:4� 102 1:2� 102 8:0� 104640 600 9:1� 102 1:0� 102 1:5� 105160 150 2:1� 1016 1:3� 102 3:9� 1002 320 300 1:5� 1016 3:2� 100 7:4� 100480 450 1:3� 1016 2:4� 100 7:2� 100640 600 1:3� 1016 4:6� 100 1:7� 101REFERENCES1. D. R. Sweet, Numeri
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